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Abstract
A theory of electronic transport through an empty triangular triple quantum dot subject to a
perpendicular magnetic field is developed using a tight-binding model and Landauer–Büttiker
approach. We show that a magnetic field allows one to engineer degeneracies in the energy
spectrum of the triple quantum dot. The degeneracies lead to zero electronic transmission and
sharp dips in the current whenever a pair of degenerate states lies between the chemical
potentials of the two leads. These dips can occur with a periodicity of one flux quantum if only
two levels contribute to the current or with half a flux quantum if the three levels of the triple
dot contribute. The effect of strong bias voltage and different lead-to-dot connections on
Aharonov–Bohm oscillations in the conductance is also discussed.

1. Introduction

Using charge sensing techniques Gaudreau et al [1, 2] recently
demonstrated lateral triple quantum dot (TQD) molecule with
controlled number of electrons, down to zero. Preliminary
transport experiments in external magnetic field [3, 4] showed
signatures of Aharonov–Bohm (AB) oscillations, indicating
coherent coupling between the constituent dots. Motivated by
forthcoming experiments, we present here a theory describing
signatures of AB oscillations in transport through the TQD
in a perpendicular magnetic field around the fundamental
quadruple point at which configurations (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (0, 0, 1) are degenerate. Using tight-binding
model we show that magnetic field allows us to engineer
degeneracies in the triple quantum dot spectrum, and that
these degeneracies lead to zero electronic transmission and
to sharp dips in the current. These anomalies in transport
can appear with different periodicities, or be suppressed,
depending on the applied source–drain voltage and dot
energies. The main features of the transport are explained as
an interplay between Fano resonances and AB oscillations.
The AB oscillations apparent in the conductance allow for

unambiguous identification of TQD parameters. The effects
of strong bias voltage on the conductance are also discussed.
Two different lead-to-dot connections are considered: a left
lead connected to a single dot and left lead connected to two
dots. The first configuration leads to a periodic oscillation of
the current with the magnetic field while the second one breaks
the periodicity introducing additional structure superimposed
on the oscillatory behavior as a function of the magnetic flux.

In our tight-binding model of an empty molecule, effects
associated with the electron–electron interactions, extensively
analyzed experimentally [5–7] and theoretically [8–14], in
the context of Kondo physics in the transport through single
quantum dots, do not appear. The electron–electron interaction
and the Kondo physics do appear at other quadruple points
where the TQD contains a finite number of electrons [15].
On the other hand, broadening of molecular energy levels is
properly taken into account in our model. A perpendicular
magnetic field is accounted for by Peierls phase factors [16, 17]
in the single-particle tunneling elements, leading to AB
oscillations in the conductance with period of one flux quantum
�0 = hc

2e (e—electron charge, h—Plank’s constant and c—
speed of light), and anomalies at half flux quantum. The AB
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Figure 1. Schematic diagram of the spatial layout of the triple dot
and the two leads. Allowed tunneling between different sites is
marked with thick long-dashed lines.

oscillations in the conductance are inherent to rings threaded
by magnetic flux [18, 19]. Flux period of 2�0 is observed
in conventional AB experiments with electrons propagating in
field-free regions [20, 21] and also in mesoscopic experiments,
for example in metal rings [22] or in electronic Mach–Zehnder
interferometers [23, 24]. Furthermore, �0 periods can be also
observed due to weak localization effects [25, 26].

At difference with previous works on equilateral triple
dot connected to leads where only the linear response to a
small bias was analyzed [27–31], or works based on a master
equation approach to a single electron tunneling [32–34] valid
only in the limit of large applied bias, using the Landauer–
Büttiker formalism [35–37], we discuss the differential
conductance in the case of arbitrary applied bias voltage and
magnetic field in an exact non-perturbative way, including the
experimental conditions in [3].

The paper is organized as follows. In section 2
we introduce the Hamiltonian describing the system while
section 3 explains how to obtain the transmission coefficient
from the transfer matrix and the scattering boundary
conditions. The AB oscillations in the current are analyzed
in section 3.1 together with the Fano line shape of the
transmission probability while the anomalous behavior of the
transmission close to multiples of half flux quantum is studied
in section 3.2. The conductance in the non-linear regime is
analyzed in section 5. The paper is summarized in section 6.

2. Model

The triple dot connected to leads is shown schematically in
figure 1. The leads are described within a one-dimensional
tight-binding model, with nearest neighbors hopping tL .
Each dot is represented by a single orbital, connected to
nearest neighbors by magnetic field dependent hopping matrix
elements ti j (B), with i, j = 1, 2, 3 (i �= j ). The left lead
is connected to the dots 1 and 2, see figure 1, through the
hopping elements tL1 and tL2, while the right lead is connected
only to dot 3 with hopping matrix element tR3. The TQD is
subject to a uniform perpendicular magnetic field, B = B ẑ.
The Hamiltonian describing the system is then given by

H = HTQD + Hleads + HL D, (1)

where HTQD is the Hamiltonian corresponding to an electron
in an isolated triple dot

Figure 2. Area responsible of the phase difference between two
points R j and Rk when a vector potential A with a gauge centered in
the point O is considered.

HTQD =
3∑

i=1

(E − �V/2) d+
i di +

3∑

i, j=1,i �= j

ti j(B)d+
i d j ,

(2)

where the operators di (d+
i ) annihilate (create) an electron in

dot i . E is the energy level of each quantum dot and �V is
the energy bias between the two leads. Notice that as a first
order approximation, we have assumed that the shift in the dot
energy levels as a function of the applied bias �V is the same
for all dots. Furthermore, for identical dots the hopping matrix
elements at B = 0 satisfy ti j = t ∀ i, j .

Hleads is the Hamiltonian describing the two non-
interacting leads with N sites each,

Hleads = εLc+
0 c0 +

−1∑

i=−N+1

[
εLc+

i ci + tL
(
c+

i ci+1 + hc
)]

+ εRc+
1 c1 +

N∑

i=2

[
εRc+

i ci + tL
(
c+

i−1ci + hc
)]

, (3)

where c+
i and ci are respectively the creation and annihilation

operators of an electron on site i in the leads, εL is the on-site
energy in the leads at zero bias and εR = εL − �V . Both
leads are characterized by the same hopping matrix elements,
tL . Finally, the interaction Hamiltonian HL D is given by

HL D = tL1(B)c+
0 d1 + tL2(B)c+

0 d2 + tR3(B)c+
1 d3 + hc.

The magnetic field B renormalizes the single-particle
tunneling elements t jk by Peierls phase factors [16, 17],

t jk(B) = t jke2π iφ j k , where φ jk = e
hc

∫ Rk

R j
A · dl. A is the

corresponding vector potential and R j and Rk are the positions
of the sites connected by the hopping elements t jk . Taking
the symmetric gauge in which A = [−By, Bx, 0], the phase
difference between two points R j and Rk is given by φ jk =
1
4 B · (Rk × R j )/�0, see figure 2, with �0 the magnetic flux
quantum.

For the three quantum dots located in the corners of an
equilateral triangle we have φ12 = φ23 = φ31 = −φ/3.
Here, φ = √

3Bl2/(8�0) is the number of magnetic flux
quanta threading the area of the TQD, with l being the distance
between dots, identified in figure 1.
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For the general case where the left lead is connected to
dots one and two through the hopping matrix elements tL1(B)

and tL2(B), while dot three is connected only to the right lead
with hopping parameter tR3, as shown in figure 1, there is an
extra magnetic flux φ′. In this case, tL1(B) = tL1e2π iφ ′

and
tL2(B) = tL2e−2π iφ ′

. If S1 and S2 are the shaded areas in
figure 1 and AT the area or the equilateral triangle defined
by the three dots, the two fluxes are related through the ratio
of areas φ′ = φ π

2 ( S1+S2
AT

). As it will be shown, these phases
have an important effect on transport leading to a non-periodic
behavior of the transmission with the magnetic field, except for
the particular case where φ/φ′ is a rational number.

3. Transfer matrix and scattering matrix

Our aim in the present section is to obtain a 2 × 2 transfer
matrix T which relates the amplitude of the wavefunctions on
the last two sites of the left lead, C−1 and C0, with those at the
first two positions of the right lead, C1 and C2. In matrix form,

(
T11 T12

T21 T22

) (
C−1

C0

)
=

(
C1

C2

)
. (4)

Here and in the following sections, we will use the notation
Xi ≡ 〈r|x+

i |0〉 with x+
i = c+

i , d+
i for the amplitude of the

wavefunction at position i . The transmission and reflection
coefficients can be then obtained by imposing the scattering
boundary conditions. In particular, if we consider a left
incident plane wave with wavevector k, the amplitudes at the
left and right of the triple dot will be given by

C0 = 1 + R C−1 = e−ika + Reika

C1 = T C2 = T eik′a,
(5)

The wavevector and the energy of the incident electron ε is
related through the dispersion relation in an infinite lead, ka =
arccos( ε−εL

2tL
) and k ′a = arccos( ε−εL +�V

2tL
), with a the lattice

constant. Then, from (4) and (5), reflection R and transmission
T can be expressed as:

R = e−ika −eik′aT11 + T21 + eika
(−eik′aT12 + T22

)

eik′a
(
eikaT11 + T12

) − (
eikaT21 + T22

) ,

T = e−ika

(−1 + e2ika
)
(−T12T21 + T11T22)

eik′a
(
eikaT11 + T12

) − (
eikaT21 + T22

) .

(6)

The transfer matrix T will be obtained by applying the
Hamiltonian to the amplitudes. It is convenient to express
the original Hamiltonian (1) in the basis of eigenfunctions of
the isolated triple dot. If we define the annihilation operators
d̄1, d̄2, d̄3 in terms of the corresponding annihilation operators
for electrons on sites 1, 2 and 3 as

d1 = 1√
3

(
d̄1 + d̄2 + d̄3

)

d2 = 1√
3

(
d̄1 + e−2π i/3d̄2 + e−4π i/3d̄3

)

d3 = 1√
3

(
d̄1 + e2π i/3d̄2 + e4π i/3d̄3

)
,

(7)

the triple dot Hamiltonian will be diagonal at all values of the
magnetic field:

H̄TQD = ε1d̄+
1 d̄1 + ε2d̄+

2 d̄2 + ε3d̄+
3 d̄3, (8)

where ε1 = [E−�V/2−2|t| cos(2πφ/3)], ε2 = [E−�V/2−
2|t| cos(2π(φ+1)/3)] and ε3 = [E −�V/2−2|t| cos(2π(φ−
1)/3)]. This is exactly the energy spectrum obtained in [38]
for the equilateral singly occupied triple quantum dot, where
it was shown that the energy levels oscillate with the magnetic
field yielding degeneracies in the spectrum at φ = n/2, n =
0, 1, . . .. For the TQD-leads coupling Hamiltonian, HL D, we
obtain

H̄L D = t̄L1c+
0 d̄1 + t̄L2c+

0 d̄2 + t̄L3c+
0 d̄3

+ t̄R1c+
1 d̄1 + t̄R2c+

1 d̄1 + t̄R3c+
1 d̄3 + hc. (9)

The new tunneling elements t̄L j and t̄R j are given by

t̄L1 = 1√
3

(tL1 + tL2)

t̄L2 = 1√
3

(
tL1 + e−2π i/3tL2

) = t̄∗
L3

t̄R1 = tR3√
3

t̄R2 = tR3√
3

e2π i/3 = t̄∗
R3.

(10)

In (9) and (10) we have omitted the magnetic flux dependence
of the tunneling matrix elements between the dots and the leads
in order to simplify the notation. In fact, this dependence does
not appear when the left lead is connected only to one dot, case
that we shall analyze in more detail later.

Defining the amplitudes D̄i = 〈r|d̄+
i |0〉, the Schrödinger

equation reads

tL C−1 + (εL − ε)C0 + t̄L1 D̄1 + t̄L2 D̄2 + t̄L3 D̄3 = 0

t̄∗
L1C0 + (ε1 − ε)D̄1 + t̄∗

R1C1 = 0

t̄∗
L2C0 + (ε2 − ε)D̄2 + t̄∗

R2C1 = 0

t̄∗
L3C0 + (ε3 − ε)D̄3 + t̄∗

R3C1 = 0

t̄R1 D̄1 + t̄R2 D̄2 + t̄R3 D̄3 + (εR − ε)C1 + tLC2 = 0.

(11)

Equation (11) allows us to express the amplitudes C1, C2

as a function of C−1 and C0. In so doing, one has to substitute
the expressions for D̄i in terms of the amplitudes in the leads
and write the resulting relations as in (4). To simplify the
expressions, in all of the following discussions we will fix
εL = 0 and the energy scale such that tL = −1, which implies
that the energy band of the leads is from −2 to 2. Then,

T11 =
[

t̄L1 t̄∗
R1

ε − ε1
+ t̄L2 t̄∗

R2

ε − ε2
+ t̄L3t̄∗

R3

ε − ε3

]−1

T12 = −T11

[
−ε + |t̄L1|2

ε − ε1
+ |t̄L2|2

ε − ε2
+ |t̄L3|2

ε − ε3

]

T21 = T11

[
−ε + |t̄R1|2

ε − ε1
+ |t̄R2|2

ε − ε2
+ |t̄R3|2

ε − ε3

]

T22 = 1

T ∗
11

− T12T21

T11
.

(12)

3
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Figure 3. log10 of the transmission probability at zero magnetic field
versus the incident energy close to the on-resonance condition with
the ground state of the triple dot. Solid line corresponds to single
lead-to-dot connection and dashed line indicates the double
connection. Dots (diamonds) shows a fitting to a Fano line shape with
q = 86.73 and � = 9.60 × 10−3 (q = 34.18 and � = 2.40 × 10−2).
The other parameters are E = −1, �V = 0, t = −0.2,
tL1 = tR3 = −0.05 and φ′/φ = 1.73 for the double connection.

Equation (12) is the central result of the paper. Nevertheless,
the expressions for the transmission and reflection coefficients
using (12) and (6) are still too lengthy, so we shall analyze
several particular cases.

In the following subsections, we study two particular cases
that can be handled analytically. To get a clear understanding
of the main features of the transmission we will consider the
simplest case where tL2 = 0 and tL1 = tR3 = tL D . We shall
further simplify the problem assuming zero bias voltage.

3.1. Transmission on-resonance with a single level

Let us consider first the situation where the incident energy
is very close to one of the levels, e.g., level 1. Furthermore,
we will assume that the other two levels are far away, i.e.,
|tL D| ∼ |ε1−ε| � |ε2−ε|, |ε3−ε|. Under these conditions, the
Hamiltonian (1) reduces to the Fano–Anderson model [39] of a
localized state in the continuum. In this case, the transmission
close to level 1 is given by a Fano-like resonance [39]

|T (ε)|2 ∝ (q�/2 + ε − ε1)
2

(ε − ε1)2 + �2/4
, (13)

where q is the Fano parameter and � the width of the resonance
defined in [40]. If the three levels are far apart, each level will
lead to one of this Fano resonances with their respective central
energy, Fano parameter and widths. Although we have used an
implicit notation in which the magnetic flux dependence is not
apparent, we should emphasize that the main variation of the
transmission with the magnetic flux in this single-resonance
regime is governed by the sinusoidal variation of the single-
particle energy levels εi , (8), with φ.

Figure 3 shows the logarithm of the transmission
probability versus the incident energy at zero magnetic field
for the single lead-to-dot connection (solid line) and the double

Figure 4. Schematic representation of the amplitudes and hopping
matrix elements between sites: (a) in the original model, (b) in the
basis of eigenvectors of the isolated triple dot and (c), the simplified
version that accounts for the case where the incident energy is close
to a quasi-degenerate pair of levels levels, i.e., ε ≈ ε1(φ) ≈ ε2(φ).

connection (dashed line), as well as the corresponding fitting
to the form of (13) (dots and diamonds, respectively). For
this case, where the coupling between the leads and the dots
is quite small compared to the tunneling tL , the line shape is
quasi-Lorentzian, indicating the high values of q .

3.2. Transmission close to a degenerate level

Our aim now is to study the effects of the magnetic field
induced degeneracies of the triple dot on the transmission.
When the energy of the incident electrons is close to the quasi-
degenerate level, the effect of the third orbital of the triple
dot on the transmission can be neglected, see lower panel of
figure 4. This approximation is valid for incident energies such
Ẽ − 2|tL D| � ε � Ẽ + 2|tL D|, where Ẽ is the energy level
of the degenerate states. The elements of the transfer matrix
can be obtained from (12) and, after the substitution in (6) and
some extra algebra, the transmission probability reads as

|T (δ)|2 = (−1 + e2ika)2t4
L Dδ2

× {β[t2
L D − 3δ(eika + Ẽ + δ)][t2

L D − δ(eika + Ẽ + δ)]
× α(δ)[α(δ) + 2δ + 2eikaδ(Ẽ + δ)]}−1, (14)

where β = (−1 + eiπ/3)(1 + e2iπ/3) and α(δ) = δ +
eika[−t2

L D + δ(Ẽ + δ)]. Here we have defined the energy
shift δ = ε − Ẽ and the corresponding wavevector k(δ)a =
arccos[(δ + Ẽ)/2]. Notice that we have written the previous
expression in an apparently complex form, but it can be
checked that (14) provides a real positively defined quantity.
Although this expression is still quite complicated, it is clear
that the transmission probability goes to zero when we are on-
resonance (|T |2 ∝ δ2). This result was previously described

4
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in the context of scattering through a tunneling junction with
two resonant impurities in [41]. In fact, when the tunneling
tL D is small enough, i.e. |tL D| � 1, and under the assumption
|t| � 1, the transmission probability when the degenerate
orbital level is on-resonance with the Fermi energy of the leads
(Ẽ = 0), can be expressed as

|T (δ)|2 ≈
2δ2�(δ)

t4
L D

(t4
L D+δ2)(t4

L D+9δ2)(
−δ2 + �(δ)2

4

) , (15)

where

�(δ) =
2
[
t4
L D − 2(−5 + 2t2

L D)δ2 + 9δ4

t4
L D

]
t4
L D

(t4
L D + δ2)(t4

L D + 9δ2)
.

As we can see from (15), the transmission probability close
to the degenerate level Ẽ cannot be approximated by the
addition of two Fano resonances, as one would naively expect
from (13).

Let us analyze why the transmission coefficient goes
to zero when the incident particles are on-resonance
with a degenerate level. Let us consider arbitrary (but
small) tunneling elements t̄L j , t̄R j such that the two level
approximation is still valid. Without loss of generality, we
assume that the degenerate levels are ε1 and ε2. Then, the
Schrödinger equation for the incident energy ε = Ẽ = 0 can
be written as

−C−1 + t̄L1 D̄1 + t̄L2 D̄2 = 0, t̄∗
L1C0 + t̄∗

R1C1 = 0,

t̄∗
L2C0 + t̄∗

R2C1 = 0, −C2 + t̄R1 D̄1 + t̄R2 D̄2 = 0.

(16)
The system of equations (16) admits two kinds of solutions
depending on the value of the determinant

A = det

(
t̄∗
L1 t̄∗

R1
t̄∗
L2 t̄∗

R2

)
. (17)

Let us consider first the case where A = 0. This implies that
t̄L1 t̄R2 − t̄R1 t̄L2 = 0. Then, making use of this relation in (16),
one can extract the on-resonance transfer matrix

T (ε = Ẽ = 0) ≡
(

0 −t̄∗
L1/t̄∗

R1
t̄R2/t̄L2 0

)
. (18)

Using the relation between the transfer matrix T and the
transmission, (6), one obtains

T = 2it̄∗
L1 t̄R2

t̄∗
L1 t̄L2 + t̄R2 t̄∗

R1

. (19)

If the tunneling elements differ only by a phase, t̄L1 = t̄L2 ≡
t̄eiθL and t̄R1 = t̄R2 ≡ t̄eiθR , with θR, θL , t̄ ∈ �, then the only
possible solution is |T |2 = 1 (full transmission). This is in
general the case of a double arm interferometer.

Now, we will consider the second case, A �= 0. Notice
that this is typically the situation in (10). The only possible
solution of the system (16) is then C0 = C1 = 0, i.e., from
the boundary conditions (5) follows that R = −1 and T = 0
(full reflection). If we assume a phase difference between the

tunneling elements, i.e., t̄L1 = t̄L2 ≡ t̄ and t̄R1 = t̄eiθ1; t̄R2 =
t̄eiθ2 with θi , t̄ ∈ �, the amplitudes on the orbital levels 1 and
2 are given by

D̄1 = −2ieiθ2

t̄
[
1 − ei(θ1−θ2)

] D̄2 = 2iei(θ1−θ2)

t̄
[
1 − ei(θ1−θ2)

] . (20)

Notice that (20) implies that the probability of finding the
electron on each of the degenerate levels is the same.
It is worth mentioning that the dips in the conductance
(zeros in the transmission probabilities), are inherent to the
two-channel resonant tunneling [41], and they have been
described in double-dot Aharonov–Bohm interferometers even
at finite temperatures and in the presence of electron–electron
interactions [42, 43]. Physically, this effect is associated with
the interference between the amplitudes of the wavefunction in
both channels which, depending on the phases of the coupling,
can lead either to full transmission (constructive interference)
or full reflection (destructive interference).

4. Current and conductance

To study the current through the system formed by the
triple dot and the two leads we apply the Landauer–Büttiker
formula [35–37]. If the chemical potential of the left lead is μL

and a bias voltage �V/e = (μL − μR)/e is applied between
the two leads, the current flowing through the system at zero
temperature is given by

I (�V , φ) = e

h

∫ μL

μL −�V
dε |T (ε,�V , φ)|2, (21)

while the differential conductance can be obtained as

G = ∂ I (�V , φ)

∂�V/e
= G0

2

[
|T (ε = μL − �V ,�V , φ)|2

+
∫ μL

μL −�V
dε

∂

∂�V
|T (ε,�V , φ)|2

]
. (22)

It relates the zero-temperature conductance to the transmission
probability |T (ε,�V , φ)|2 at incident energy ε. Here G0 =
2e2

h is the quantum of conductance. Notice that in the
linear regime (small �V ), the differential conductance (or just
conductance) is proportional to the transmission at the Fermi
level of the left lead, since the second term in (22) cancels
for �V → 0, while at intermediate bias, the second term
is responsible for extra structure in the peaks of the linear
conductance, increasing the complexity of the profile as we
increase the bias [44]. The current and the conductance in the
linear regime are given by

I = e

h
|T (ε = μL; 0, φ)|2�V , (23)

G = G0

2
|T (ε = μL; 0, φ)|2. (24)

Therefore, the problem of obtaining the current through the
system is reduced to the calculation of the transmission
coefficient T (ε; �V , φ).

5
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Figure 5. Transmission probability (vertical gray scale with black
for 1) at the Fermi energy versus the number of magnetic flux quanta
φ and dot energy E for the cases (a) tL2 = 0 showing periodic
behavior with φ and (b), tL2 = tL D with additional non-periodic
structure. tL D = −0.05, �V = 0 and EF = −1.

5. Results

Here we are interested in the regime in which the energy band
of the leads is much bigger than the energy splitting between
the three levels of the TQD (|t| � 1). Also, the tunneling
between the dots and the leads will be taken much smaller than
other energy scales in the problem.

Let us consider first the linear transport, where (24)
and (23) are valid. Figure 5(a) shows the transmission
probability at the Fermi energy versus the magnetic flux and
the dot energy E , tuned by external gates, for tunneling tL2 = 0
with t = −0.2, tL1 = tR3 = tL D = −0.05, and EF = −1.
As shown in figure 5(a), the transmission is periodic in the
magnetic flux with period of one flux quantum, in accordance
with the energy spectrum described in [38]. The transmission
pattern can be understood as follows. Electrons tunnel through
the TQD only when one of the three levels of the quantum
molecule is on-resonance with the Fermi energy (EF = −1).
For an arbitrary value of the magnetic flux, this occurs for
three different values of the dot energy E . For example, at
zero magnetic flux the resonance condition is fulfilled when
the ground state (EG = E − 2|t|) is on-resonance with the
Fermi level (E = −0.6) while in the case of the doubly-
degenerated excited state, (Ee = E + |t|), this happens when

Figure 6. Differential conductance G (vertical gray scale) versus
number of magnetic flux quanta φ and the dot energy E in the
non-linear regime. �V = 1, μL = −1, t = −0.2 and
tL2 = tL D = −0.05. The ratio of fluxes is φ′/φ = 1.73.

E = −1.2. The oscillation in the levels of the isolated triple
dot with the magnetic flux is reflected in the transmission since
the values of high transmission correspond to dot energies on-
resonance with the Fermi level. The structure that appears in
figure 5(a) is preserved for values of |tL D| � |t|, with the
width of the high transmission regions increasing with tL D . For
|tL D| > |t|, the transmission is a smoother function of the flux
(not shown here) and the profile is deformed with respect to
the case considered here. Figure 5(b) shows the transmission
as a function of the magnetic flux and dot energy when the
tunneling between the left lead and the second dot is allowed
(tL2 = tL D) for the ratio φ′/φ = 1.73. This ratio of fluxes leads
to a non-periodic structure superimposed on the one appearing
in figure 5(a), a consequence of the interference between the
two magnetic fluxes.

Let us consider now a case in which the transmission
window given by �V is much bigger than |t| (this is the
case in most experimental setups with networks of lateral dots,
including [3]). Then the total current contains contributions
from all incident energies within the transmission window,
see (21) and (22), a non-linear regime. Figure 6 shows
a contour plot of the differential conductance versus the
magnetic flux for the dot energy EF = −1, �V = 1 and tL2 =
tL D = −0.05. The variation of G with the flux φ resembles
the dependence of the transmission probability, shown in
figure 5(b). This allows the determination of the tunneling
matrix elements |t| from the amplitude of the oscillations.
Therefore, the differential conductance under finite source–
drain bias maps out the energy levels of the TQD.

Although the contour plot of figure 6 provides the basic
picture of the behavior of the TQD connected to the leads,
it does not allow us to see several important details. To
simplify the analysis of the fine structure we can consider the
simplest case with single lead-to-dot connection and look at
the current. We have shown the resulting current for three
different values of the dot energy, E = −0.8, figure 7(a),
E = −0.6, figure 7(b), and E = −0.2, figure 7(c), using
the same parameters as in figure 6. The first case, E = −0.8,
corresponds to the scenario where the three levels of the triple

6
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Figure 7. Current versus number of magnetic flux quanta φ in the non-linear regime under a bias �V = 1 and for the single lead-to-dot
connection. (a) Shows the case where the three levels can contribute to the current, with E = −0.8, (b), up to two levels (E = −0.6) and
(c) only one level (E = −0.2). EF = −1, t = −0.2, and tL D = −0.05. The sharp dips in the current appear with different frequency for each
case: 1/2 in (a), 1 in (b) and no dips in (c).

dot contribute to the current. As we have shown previously,
when the incident particle has an energy on-resonance with
degenerate levels, the transmission probability drops to zero.
In fact, even for the general case where tL2 �= 0 and under
an applied bias �V , it can be proven that close to the central
energy Ẽ

∣∣∣∣T
(

ε,�V , φ = n

2

)∣∣∣∣
2

≈ f (E,�V )(ε − Ẽ)2, (25)

with φ = n
2 , n = 1, 2, . . . and f (E,�V ) a function

of the dot energy and the bias voltage. These zeros in
the transmission are reflected in the current as sharp drops
whenever a pair of degenerate levels lies between the chemical
potential of the two leads. In figure 7(a), this happens when
φ = n/2, n = 1, 2, . . .. It should be pointed out that
the zero in the transmission probability at the degenerate
level does not imply zero current, as can be clearly seen
from (21), since contributions from the whole interval of
energies [μL − �V , μL ], which may include the three
broadened levels as in figure 7(a), must be accounted for.
Anomalous behavior in the transmission through a double-
dot Aharonov–Bohm interferometer have also been described
in [42, 45]. In particular, Kubo et al [45] have reported

sharp zero conductance dips in the linear regime using the
Green’s function formalism while Tokura et al [43] found
similar results for the current under large bias using a quantum
master equation. A second scenario appears in figure 7(b),
where only two levels can contribute to the current. In
this case, the anomalous dips in the current appear with a
periodicity of one flux quantum. Finally, the third possibility,
at most one level contributing to the current, is presented in
figure 7(c). Here, the dips in the current have disappeared since
the possible degenerate states of the triple dot are outside the
transmission window. We want to emphasize that the different
periodicities in the sharp dips we have reported here have a
completely different nature to the periodicity doubling showed
in [34], which was due to the removal of the symmetries of the
triangular triple dot [29].

From our discussion, it should be clear that the
anomalous behavior of the current with the magnetic field is a
manifestation of degeneracies in the system. These anomalies
can appear in AB interferometers with at least two quantized
levels [42, 45] or more complicate systems like our triple
dot [34, 29]. Finally, we want to emphasize the capabilities of
the transfer matrix method that recovers the results obtained in
the linear [27–31] as well as in the large bias [32–34] regimes,
allowing the study of transport under arbitrary bias.

7
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6. Conclusions

To summarize, we have analyzed the linear and non-linear
differential conductance through an equilateral triple dot
connected to two leads and subject to a perpendicular magnetic
field. Two possible spatial configurations were analyzed: a
single lead-to-dot connection where only one flux threads the
system and a double connection where two different fluxes
must be considered. In both cases, we found that superimposed
on the AB oscillations induced by resonances with the
oscillatory levels of the TQD, sharp dips in the current appear
whenever degenerate states lie between the chemical potential
of the two leads. Therefore, three scenarios are possible: no
dips implying degeneracies outside the transmission window,
dips appearing with a periodicity of one flux quanta implying
at most two levels contributing to the current and dips with
periodicity of half flux quantum implying all three levels
contributing to current. We provided here a simple theory of
the dips in the conductance in terms of transport through a
pair of degenerate levels. The presence of a double lead-to-
dot connection produces an additional non-periodic structure
in the conductance as a function of the magnetic field, related
to the existence of two non-commensurate fluxes threading
the system. Both effects, AB oscillations and the dips in the
current are visible when large potential bias is applied between
the two leads.
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